
1

Unstructured Adaptive Grid Computations on an Array of SMPs

R. Biswasa, I. Prarnanickb, A. Sohnc, and H.D. Simond

3Research Institute for Advanced Computer Science (RIACS),
MS T27A-l, NASA Ames Research Center, Moffett Field, CA 94035, U.S.A

bNetwork Systems Division,
MS 8U-802, Silicon Graphics Inc., Mountain View, CA 94043, U.S.A

CDepartment of Computer and Information Science,
New Jersey Institute of Technology, Newark, NJ 07102, U.S.A

dNational Energy Research Scientific Computing Center (NERSC), I
MS 50Aj5104, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U~S.A

Dynamic load balancing is necessary for the parallel adaptive solution of unsteady prob-
lems in fluid dynamics, since their computational requirements change as the simulation
progresses leading to load imbalance. JOVE is such adynamic load-balancing framework.
We study the performance of two different implementations of JOVE on the Silicon Graph-
ics' POWER CHALLENGEarray. This parallel machine is an array of shared-memory
symmetric multiprocessing (SMP) systems, an architecture that is becoming increasingly
popular as the most useful model of scalable parallel computing. Parallel algorithms need
to be designed to exploit the hybrid communication model offered by such an architecture,
and in this paper, we study these issues as they relate to JOVE.

1. INTRODUCTION

The extremely large computational requirements for adaptive calculations od unstruc-
tured grids, both in terms of processing time and in-core memory, can be successfully
addressed by the use of massive parallel processing. A parallel implementation for such
a problem consists of partitioning the computational mesh, and mapping the resulting
submeshes onto processors. However, the computational intensity of these unsteady CFD
calculations is typically both time- and space-dependent. Therefore, a static partition-
ing/mapping leads to load imbalance, even to the extent of offsetting any advantages of
parallel processing. As a result, a dynamic repartitioning and remapping of the workload
among processors is necessary for parallel processing to be beneficial for such applications.

Effective dynamic load balancing depends on several issues, including a reliable mea-
surement of computational load, minimization of runtime data movement, and minimiza-
tion of inter-processor communication. Our dynamic load balancer, called JOVE [5], is
intended to satisfy these requirements. It possesses three novel features. FirJt, a d1;lal
graph representation of the computational mesh is used to keep the complexity and con-

2

nectivity constant during the course of an adaptive computation. Second, a new inertial
spectral mesh partitioning method [4] is introduced that performs both faster and better
than Recursive Spectral Bisection [3]. Finally, a new heuristic processor assignment pro-
cedure and an accurate metric for estimating the communication overhead are presented.

An array of SMPs is rapidly becoming the architecture of choice for scalable parallel
computing, as evidenced by the announcement of such machines by several computer ven-
dors. The POWER CHALLENGEarray from Silicon Graphics is one of the first examples
of such an architecture, and combines the benefits of both shared- and distributed-memory
machines. It offers the ease of programmability of shared-memory with the scalability of

distributed-memory systems. It supports both these parallel processing paradigms at the
extremes of a spectrum of a multitude of programming models. Not only do these mixed
models utilize the underlying architecture maximally, they present challenges in parallel
processing that are absent in the two standard paradigms. In this study, we analyze
JOVE with respect to the various programming models available on the POWER CHAL-
LENGEarray, focusing on a "flat" message-passing model and an array of SMP-centric
"hybrid" model where parallel tasks are aware of local (on the same SMP) versus remote
(on a different SMP) threads and communicate with one another accordingly. Results in-
dicate that the hybrid approach to parallel programming on such architectures is indeed
an attractive one, hiding some of the costs associated with traditional message passing.

2. OVERVIEW OF JOVE

We have developed a software environment that uses global dynamic load balancing
for unsteady adaptive CFD calculations [5]. Figure 1 gives an overview of our approach
to load balancing. The system consists of three modules: the load balancer JOVE, a
CFD flow solver, and the 3D_TAG mesh adaptor [1]. Details of the CFD solver are given
in [6]; all that is needed here is that the solver produces er~or estimates that are then
used by 3D_TAG to refine and/or coarsen the mesh. Note that both the adaption and
solver phases are simulated for the results reported in this paper.

The first step of JOVE is Pre_eval (new) which rapidly determines if the new mesh
warrants further action in terms of repartitioning and processor reassignment. If repar-
titioning is recommended, Partition(new) divides the new mesh into subgrids. A new
inertial spectral bisection algorithm [4] is used to rapidly update a partition from one grid
to the next. The Evaluate(old.new) step consists of assigning partitions to processors
such that the communication overhead for data migration is minimized. It calculates
two numbers: the computational gain camp that would be achieved by having a balanced
partitioning, and the communication cost cornrn of moving all the data to correctly map
partitions to processors. If camp is larger than comm, it is advantageous to use the new
partitioning. In that case, the CFD simulation is interrupted while all the necessary data
is redistributed based on the new processor assignments. The CFD calculation is then
restarted on the new partitions. Otherwise, the new partitioning is discarded and JOVE
waits for the next adapted mesh.

2.1. Dual graph representation i

The dual graph representation of the initial computational mesh is on~ of the key
features of this work (cf. Fig. 2). The most significant advantage of using the dual graph is

3

lit

Figure 2. Initial and adapted meshes with
the dual graph and computational weights.

if (pre_eval(new) = NOK) (I
Partition(new);
C<mp,comm =

Evaluate(old,new);
if(C<mp > comm)
Move(old,new);

}

Figure 1. Our dynamic load balancing
framework.

that its complexity and connectivity remains unchanged during an adaptive computation.
The partitioning and load-balancing times therefore depend only on the initial problem
size and the number of processors used.

Parallel implementations of CFD solvers usually require a partitioning of the mesh
such that each element belongs to an unique partition. The tetrahedral elements of a
three-dimensional mesh are the vertices of the dual graph. An edge exists between two
dual graph vertices if the corresponding elements share a face. A graph partitioning of
the dual thus yields an assignment of elements to processors. Each dual graph vertex
has two weights: wcomp, that models the computational workload for the corresponding
element, and wcomm, that models the communication cost of moving the element from one
processor to another. New grids obtained by adaption are translated to the two weights
for every element in the initial mesh (cf. Fig. 2).

2.2. Inertial spectral mesh partitioning
If Pre_eval(new) determines that the dual graph with the new wcomp is not load bal-

anced, JOVE invokes the mesh partitioning procedure. Several partitioning algorithms
are available for unstructured grids; however, a new procedure that combines the high
quality of spectral methods [3] with an efficient update strategy is used. This new algo-
rithm [4] is based on the center of inertia of the vertices of the dual graph and utilizes
information from the initial spectral partitioning. It is thus capable of rapidly updating a
partition from one grid to the next. The algorithm in Fig. 3 briefly explains the method.

2.3. Processor reassignment and cost computation
The objective of Evaluate(old.new) is to map new partitions to processors such that

the redistribution cost is minimized. A similarity matrix S is computed that indicates how
the communication weights of the new partitions are distributed over the old partitions.
The entry Sij is the sum of the wcomm of all the dual graph vertices that have moved from
old partition i to new partition j. A new partition j with the largest value of Sij is called
the dominant partition for old partition i. The data redistribution cost can be minimized
by remapping the processor assigned to an old partition to its corresponding dominant
partition. The dominant partitions have to be rearranged so that each new partition
is dominant for exactly one old partition. However, this rearrangement constitutes an
optimization problem with a polynomial-time solution. Instead, we obtain a suboptimal
solution in linear time using the algorithm in Fig. 4. Note that the inner loop is executed
only for those partitions i that have more than one dominant weight (ndp[i] > 1).

4

for (i=O; i<npart; i++) II npart = #partitions
forG=l;j<ndp[i];j++) (Ilndp[i]=#domweights

Findmin dominant weight S[l][i] from new partition i
Find max non-dominant weight S[l][k] from

old partition I so that ndp[k] < 1
Malic S[l][i] non-dominant
Malic S[l][k] dominant
Set ndp[k] to I

for (i=O; i<log(npart); i++) { II npart = #partitions
Find an inertial vector of the unpartitioned vertices
Construct an inertial matrix using the inertial vector
Symmetrize the inertial matrix
Find the eigenvectors of the inertial matrix
Project vertex coordinates on eigenvector 0
Sort projected coordinates
Divide the unpartitioned vertices into 2 sets

}

Figure 4. Pseudocode for processor reas-

signment.

}

Figure 3. Pseudocode for inertial spectral
mesh partitioning.

The computational gain due to repartitioning is proportional to the decrease in the
load imbalance achieved by running the adapted mesh on the new partitions rather than
on the old partitions. If it requires Titer secs to run one iteration of the flow solver on
one element of the original mesh, and if it is expected that the next mesh adaption will
occur after Nadapt solver iterations, the total computational gain for the new partitioning
is TiterNadaPt(W;:;~ -W~~~), where W;:;~ and W~~~ are the sum of the Wcomp on the most

heavily-loaded processor for the old and new partitionings, respectively.
The redistribution cost is calculated from the similarity matrix S obtained after pro-

cessor reassignment. Two machine-dependent parameters, the remote-memory latency
time nat and the message setup time T setup, are used to calculate the actual cost. If the
CFD solver and mesh adaptor require M words of storage per element, and if C and N
are the total number of elements and sets of elements to be moved, respectively, the total
communication overhead for mapping new partitions to processors is CMTlat + NT setup'

3. ARRAYS OF SMPs

Clusters of SMPs, connected by a high-speed network, are becoming the architecture
of choice for most new parallel computers. Supercomputer manufacturers such as Silicon
Graphics, DEC, and Convex already market such machines, and other vendors have an-
nounced plans of moving from totally distributed machines to such a hybrid architecture.
Arrays of SMPs combine the efficiency, flexibility, and ease of programmability of shared-
memory multiprocessing with the scalability of message-passing architectures. This leads
to a better computation-to-communication ratio since messages are exchanged between
SMPs for larger blocks of parallel computation. Each node of such a parallel architec-

ture consists of tens of processors, and is thus capable of supporting programs requiring
medium levels of parallelism. At the same time, it provides a larger effective memory
capacity than an equivalent distributed-memory machine. This is particularly useful for
applications with large computational, memory, and I/O requirements that cannot be
accommodated on individual workstation-class machines that form the building blocks

of traditional distributed-memory computers. On the other hand, applications requir-
ing higher levels of parallelism and/or having larger memory requirements (than can be
supported within one such node) can be restructured to span multiple SMPs of the array.

The Silicon Graphics POWER CHALLENGEarray consists of up to eight POWER
CHALLENGE systems, referred to as POWERnodes, connected by a HiPPI interconnect.
It offers a two-level communication hierarchy, where processors within a POWERnode

5

communicate via a fast shared-bus interconnect, and processors across POWERnodes
communicate via a high-bandwidth HiPPI interconnect. The inter~POWERnode message-
passing overhead can be amortized over the computation, since parallel tasks within a
POWERnode can use global shared memory to communicate shared data.

Applications that span multiple parallel POWERnodes need to be reengineered to take
advantage of the hybrid communication model offered by such an architecture. Existing
parallel algorithms designed for shared-memory or shared-nothing distributed-memory
computers will typically need to be modified by varying extents to exploit this hybrid
communication model. There are several approaches to modifying these algorithms, and
the method of choice for any particular application will ultimately depend on the com-
putation and communication characteristics of the algorithm used. Additionally, the
programming models offered on such a system may also exploit the hybrid model as is
the case with the implementation of SGI's MPI and PVM libraries.

The POWER CHALLENGEarray supports a hierarchy of parallel programming mod-
els that can be useful for the entire spectrum ranging from fine-grained to coarse-grained
parallelism. It provides both shared-memory and message-passing programming mod-
els within a single POWERnode as well as across the array itself. The MPI and PVM
message-passing libraries provided on the POWER CHALLENGEarray use shared mem-
ory to communicate between the message-passing tasks, if these tasks are on the same
POWERnode. The MIPSPro Fortran and C compilers on each POWERnode provide
automatic and user-assisted parallelization using threads within a POWERnode. Details
on the various parallel paradigms available on the POWER CHALLENGEarray are given
in [2].

4. FLAT VB. HYBRID JOVE

For the problem at hand, we studied two different approaches to parallelism on the
POWER CHALLENGEarray. The first approach is the "flat" JOVE model which uses
MPI for inter-task communication. As mentioned in the last section, SGI's MPI im-
plementation automatically uses shared memory for inter-task communication within a
POWERnode, resorting to message passing only for communication between tasks on
distinct POWERnodes. Of course, the application code does not differentiate between
local and remote tasks, hence the name "flat."

The second approach is a hybrid one, where explicit shared memory is used within
a POWERnode and message passing is used between POWERnodes. This approach
consists of exactly one MPI task per POWERnode that spawns off a number of paral-
lel threads on its POWERnode using the MIPSPro compiler-assisted pragma directives.
The parallel threads (including the original MPI task) divide the adaption and computa-
tion (flow solver) phases among themselves, with the MPI task taking care of inter-task
communication, partitioning, and load balancing. This scheme is represented in Fig. 5.

The hybrid approach thus has a fewer number of MPI tasks than the flat model. This
not only reduces the number of messages being exchanged, but also increases the size of
the messages. These factors result in a reduction in the latency and bandwidth costs asso-
ciated with message-passing systems, leading to a decrease in the overall communication
costs. Also, the decrease in the number of MPI tasks reduces the cost of the partitioning

6

POWERnode 1 POWERnode 2

MPI task Initialization MPItask

A
I
I
I
I
I
I

I
I
I
I
I
I
I

A
I
I
I
I
I

I
I
I
I

Computation

Inter-task (MPI)

communication

Figure 5. Hybrid MPI model on the SGI POWER CHALLENGEarray.

phase of JOVE. The cost of creating and maintaining the threads is additional in the hy-
brid approach, but as the results indicate, this is more than compensated by the decrease
in the communication costs.

5. RESULTS

The experiments in this study consisted of running the sequential JOVE algorithm, a
parallel implementation with static partitioning (referred to as NOLOAD), and the flat
and hybrid versions of JOVE on a POWER CHALLENGEarray. Two three-dimensional
unstructured meshes were used: BRICK, consisting of 2500 tetrahedral elements and
4600 edges, and STRUT, consisting of 14,504 tetrahedral elements and 57,387 edges. The
number of adaptions was set at 20, 35, and 50 for BRICK, and 20 and 35 for STRUT.
Both the adaption and flow solver phases were simulated.

The POWER CHALLENGEarray used for our experiments consisted of four 90 MHz
R8K POWER CHALLENGE machines, with the number of processors on each varying
from 12 to 16. The sequential code was run on one of the processors of the array, while
the parallel codes were run on 1, 2, or 4 POWERnodes, each with 2, 4, or 8 processors.

The NOLOAD strategy was run on each of these configurations for direct comparisons
with the flat JOVE model. For both NOLO AD and flat JOVE, the number of MPI
tasks was equal to the number of processors used in each configuration. For the hybrid
JOVE model, the number of POWERnodes determined the number of MPI tasks, and
the number of processors on each POWERnode determined the number of threads that
the MPI task running on that POWERnode would spawn.

The graphs in Figs. 6 to 9 show the results obtained from four different perspectives.
The advantage of load balancing over a static partitioning technique is illustrated in Fig. 6.
This graph plots the ratio of the times required by NOLOAD versus flat JOVE as the
number of processors is increased from 2 to 32. These results demonstrate the significant
advantage of load balancing for the class of applications studied here. JOVE consistently
outperforms NOLOAD, the improvement being bigger for the larger STRUT mesh.

Figure 7 shows the speedup of flat JOVE as the number of processors is increased from
2 to 32. The speedup varies from 1.69 to 1.98 on 2 processors, from 3.36 to 3.90 on 4
processors, from 5.88 to 7.86 on 8 processors, from 12.50 to 15.29 on 16 processors, and

7

from 22.64 to 31.20 on 32 processors. These results demonstrate that even in absolute
terms, JOVE yields significant speedup performance. Furthermore, the speedup curves for
the different number of adaption steps are almost linear, indicating scalability. For a given
mesh and a fixed number of processors, the speedup increases as the number of adaptions
is increased. This is because the computational workload per processor increases with the
number of adaptions, resulting in a higher speedup value. Finally, the speedup values are
larger for STRUT than for BRICK. This indicates that for large realistic meshes, load

balancing will be even more beneficial.
Figure 8 shows how the total execution time of JOVE is distributed among its various

phases for 50 adaptions on the BRICK mesh. Observe that the partitioning and evaluation
costs are negligible compared to the communication and computation costs. Note that the
computation cost consists of both the adaption and flow solver times. The communication
cost is more than three orders of magnitude less than the computation cost when two
processors are used, but is only an order less when 32 processors are used. Under these
conditions, the hybrid JOVE model should perform significantly better than the flat model

since the former reduces communication costs.
The performance of flat and hybrid JOVE are compared in Fig. 9. Results show that the

hybrid model outperforms the flat model in almost all the cases, giving upto a 28% better
speedup on 32 processors. The speedup ratio increases with the number of processors;
this is expected as the savings in the communication costs for hybrid JOVE increases as
the number of processors is increased. The advantage of hybrid JOVE is the largest for 20
adaptions on BRICK, but decreases as the number of adaptions is increased. Also, hybrid
JOVE does better in general than flat JOVE for BRICK than for STRUT. These results
are however more a consequence of the fact that the absolute performance of flat JOVE
for STRUT is better for a larger number of adaptions, being fairly close to the theoretical
maximum (15.11 on 16 processors). In such cases, hybrid JOVE still outperforms flat
JOVE, but is limited by the theoretical maximum. When the adaption and the flow
solver phases are actually incorporated into JOVE (as opposed to being simulated as in
this study), the speedup of flat JOVE may not be so close to the ideal. In such cases, we
expect hybrid JOVE to consistently show significant advantage over flat JOVE.

8

6. SUMMARY

Dynaniic load balancing is necessary for parallel adaptive methods to solve unsteady
CFD problems on unstructured grids. We have presented such a dynamic load balanc-
ing framework called JOVE, in this paper. Results on a four-POWERnode POWER
CHALLENGEarray demonstrated that load balancing gives significant performance im-
provements over no load balancing for such adaptive computations. The parallel speedup
of JOVE, implemented using MPI on the POWER CHALLENGEarray, was significant,
being as high as 31 for 32 processors. An implementation of JOVE that exploits "an
array of SMPs" architecture was also studied; this hybrid JOVE outperformed flat JOVE
by up to 28% on the meshes and adaption models tested. With large, realistic meshes
and actual flow-solver and adaption phases incorporated into JOVE, hybrid JOVE can be
expected to yield significant advantage over flat JOVE, especially as the number of pro-
cessors is increased, thus demonstrating the scalability of an array of SMPs architecture.

Future work needs to study the performance of flat and hybrid JOVE on an array of
R10K POWER CHALLENGEs, which are particularly suited for integer-based codes such
as JOVE. Also, further experimentation with the actual flow solver and mesh adaption
codes incorporated into JOVE, and studies with larger, realistic production meshes are
needed to further add to the evidence of the advantages of dynamic load balancing and

of the advantages of the array of SMPs architecture.

REFERENCES

1.

2.3.

4.
5.
6.

R. Biswas and R.C. Strawn, Appl. Numer. Math. 13 (1994) 437.
POWER CHALLENGEarray Technical Report, Silicon Graphics, 1995.
H.D. Simon, Compo Sys.. in Engrg. 2 (1991) 135.
H.D. Simon, Irregular'96 (1996) to appear.
A. Sohn, R. Biswas, and H.D. Simon, 8th ACM SPAA (1996) to appear.
R.C. Strawn and T.J. Barth, J. AHS 38 (1993) 61.

